Nanomechanical Characterization of the Triple b-Helix Domain in the Cell Puncture Needle of Bacteriophage T4 Virus
نویسندگان
چکیده
Beta-solenoids are a class of protein nanotube structures that are observed in virulence factors, prion proteins and amyloid fibrils. Here we investigate the compressive strength of the triple-beta-helix solenoid structure found in the cell puncture needle of the bacteriophage T4 virus. We characterize the compressive mechanical strength of this protein nanotube using full-atomistic molecular dynamics simulations in explicit solvent over a wide range of deformation speeds. We observe that the dynamical behavior, stiffness and failure strength of the structure are strongly dependent on the deformation rate. We illustrate that H-bond rupture initiation is the atomistic mechanism that leads to instability and buckling of the protein nanotube at the peak force. We show that the behavior of the protein under small compressive deformation can be approximated by a rate-dependent linear elastic modulus, which can be used in context of a continuum Euler buckling formula for the triple-helix geometry to predict the failure load. Our work provides a link between the structure and biofunctional properties of this beta-solenoid topology, and illustrates a rigorous framework for bridging the gap between experimental and simulation time-scales for future compression studies on proteins. Our study is relevant to self-assembling peptide nanotube materials, and may provide insight into the influence of mechanical properties on the pathological pathways of virulence factors, prions and amyloids found in neurodegenerative diseases. Keywords—Protein, Nanotube, Triple beta-helix, Betasolenoids, Buckling, Failure, Mechanics, Rate-dependence, Molecular dynamics, Hydrogen bond, Cell-puncture device,
منابع مشابه
Structure and Biophysical Properties of a Triple-Stranded Beta-Helix Comprising the Central Spike of Bacteriophage T4
Gene product 5 (gp5) of bacteriophage T4 is a spike-shaped protein that functions to disrupt the membrane of the target cell during phage infection. Its C-terminal domain is a long and slender β-helix that is formed by three polypeptide chains wrapped around a common symmetry axis akin to three interdigitated corkscrews. The folding and biophysical properties of such triple-stranded β-helices, ...
متن کاملPlasma membrane translocation of a protein needle based on a triple-stranded β-helix motif.
Plasma membrane translocation is challenging due to the barrier of the cell membrane. Contrary to the synthetic cell-penetrating materials, tailed bacteriophages use cell-puncturing protein needles to puncture the cell membranes as an initial step of the DNA injection process. Cell-puncturing protein needles are thought to remain functional in the native phages. In this paper, we found that a b...
متن کاملStructure of a group A streptococcal phage-encoded virulence factor reveals a catalytically active triple-stranded beta-helix.
Streptococcus pyogenes (group A Streptococcus) causes severe invasive infections including scarlet fever, pharyngitis (streptococcal sore throat), skin infections, necrotizing fasciitis (flesh-eating disease), septicemia, erysipelas, cellulitis, acute rheumatic fever, and toxic shock. The conversion from nonpathogenic to toxigenic strains of S. pyogenes is frequently mediated by bacteriophage i...
متن کاملTriangular core as a universal strategy for stiff nanostructures in biology and biologically inspired materials
a r t i c l e i n f o Recent findings in protein structure prediction have revealed a new class of fibrous proteins called beta-solenoids. In stark resemblance to amyloid structures and prion proteins, these self-assembling peptides feature a triangular cross-sectional structure with non-specific biological significance. Using basic geometric and mechanical arguments and finite element simulati...
متن کاملConstruction of the Recombinant Plasmid Expressing AID under the Control of Temperature-sensitive Promoter of Bacteriophage Lambda
Background and purpose: Activation-induced cytidine deaminase (AID) is a B-cell specific enzyme responsible for somatic hypermutation (SHM) and class switch recombination (CSR) of antibody genes within the B-cell follicle of peripheral lymphoid organs. Ectopic overexpression of the enzyme leads to mutations in non-B cells and Escherichia coli (E.coli) genes. However, induction of mutations in E...
متن کامل